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Abstract. In video surveillance, we can rely on either a visible spec-
trum or an infrared one. In order to profit from both of them, several
fusion methods were proposed in literature: low-level fusion, middle-level
fusion and high-level fusion. The first one is the most used for moving
objects’ detection. It consists in merging information from visible image
and infrared one into a new synthetic image to detect objects. However,
the fusion process may not preserve all relevant information. In addition,
perfect correlation between the two spectrums is needed. In This paper,
we propose an intelligent fusion method for moving object detection.
The proposed method relies on one of the two given spectrum at once
according to weather conditions (darkness, sunny days, fog, snow, etc.).
Thus, we first extract a set of low-level features (visibility, local contrast,
sharpness, hue, saturation and value), then a prediction model is gener-
ated by supervised learning techniques. The classification results on 15
sequences with different weather conditions indicate the effectiveness of
the extracted features, by using C4.5 as classifier.

Keywords: Image fusion - Classification - Weather conditions - Moving
object detection

1 Introduction

Moving object detection in complex scenes is an active research topic in computer
vision. The related research area includes intelligent video analysis, which can be
applied to monitor outdoors areas such as airports, streets, highways, subways
and parking lots etc. The research diversity is justified by the complexity of
the problem and the variability of its challenges, still incompletely resolved,
like detection in night-time, in total occlusion and in presence of non-stationary
background objects. Therefore, we relied on two categories of cameras: visible
ones and infrared ones which provide as respectively visible (VIS) spectrum and
infrared (IR) spectrum.

In the literature, several methods[1],[2],[3],[4],[5],[6] have been proposed for
moving object detection in VIS spectrum. These methods are based either on
background modeling [1],2],[3], on optical flow [4],[5],[6], or on inter-frame dif-
ference [7],[8],[9]. However, these methods suffer from many limitations such as
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failure to face camouflage, night or poor visibility conditions (fog, snow, rain,
etc.).

In order to overcome these limitations, many works [10],[11],[12] propose to use
IR sensor. We can distinguish two approaches to detect moving object from IR
sensor: pixel/region-based approaches [12],[13],[14] and model-based approaches
[13],[14],[15],[16]. These methods achieve a good performance especially in night
and/or poor visibility conditions, but fail in presence of some climatic conditions
like a hot sunny day or when the object has low contrast (not warmer than the
background) [17],[18].

Face to limitations of the use, at once, of visible or infrared spectrums, recent
researches [14],[17],[19],[20] propose to use both Visible and Infrared sensors. A
fusion between the information provided by VIS and IR cameras for moving
object detection would offer complementary solutions: relying on visible images
in sunny days, we achieve a good detection and can extract a rich content; while
the use of infrared sensor seems to give better results for moving object detection
in presence of darkness, limited levels of luminosity, shadows, light reflections,
or some weather variations. Visible and infrared fusion aims to perform correct
moving object detection all over the day (morning, afternoon and night) for
particular hot objects such as persons and vehicles [21].

In the literature, moving object detection using both visible and infrared spec-
trums suppose merging information in different levels: low-level, medium-level or
high-level. Experimentations prove that, in some cases, merging information may
reduce the quality of moving object detection. Thus, in this paper our main con-
tribution is to propose an intelligent fusion of VIS-IR spectrums based on weather
conditions’ classification. The rest of this paper is organized as follows: Section 2
provides an overview of literature related to fusion techniques.
Section 3 describes the proposed method for VIS-IR spectrums fusion. Section 4
outlines the results of a quantitative and a qualitative evaluation. Finally, Section 5
recapitulates the presented method and outlines future work.

2 State of Art on Fusion Techniques

Moving objects detection” methods relying on Visible/Infrared fusion can be
classified into three categories according to the level of processing [17],[18],[22]:
Low-level fusion, Medium-level fusion and High-level fusion. In low-level fusion,
also called signal, data or pixel-level fusion, fused images are generated by merg-
ing pixel information from both spectrums. Therefore, infrared and visible im-
ages must be synchronized so that all pixel positions of all the input images
correspond to the same location. The most common pixel level fusion techniques
[17],[23],[24] are: techniques based on Weighted Averaging, techniques based on
Pyramid Transforms and techniques based on a Wavelet Transforms.

In medium-level fusion, also called feature-level fusion, they first extract fea-
tures from both the infrared spectrum and the visible one. Then, they fuse the
extracted features. This fusion could be achieved in two ways: among the two
modules of features extraction and features selection or after both of them [19].
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Since, one of the essential goals of fusion is to preserve the image features, fea-
ture level methods have the ability to yield subjectively better fused images than
pixel based techniques [17],[25].

Finally, the last category of fusion methods concerns high-level fusion. In
this latter, the fusion is applied either at decision level or at score level. In the
fusion at decision level, the classifiers are applied independently to each sensor
output. The given decisions are combined to make a final decision [17]. In the
score level fusion, multiple classifiers produce a set of scores which represent the
probabilities that one object belongs to different possible classes. These score
can be combined by a weighted parameter in order to obtain a new score which
is then used to make the final decision [19].

The choice of the fusion level depends on the nature of the handled applica-
tion. In our context, we aim to improve the quality of moving object detection.
Thus, we will be interested with low-level fusion. However, in this fusion, we
must satisfy a set of constraints [26]: the fusion process should preserve all rele-
vant information on the input imagery in the composite image; the fusion pro-
cess should not introduce any artifacts or inconsistencies and the fusion process
should be shift and rotational invariant. Moreover, low-level fusion techniques
suppose that a perfect correlation between the images is performed before per-
forming the fusion itself. When images are not well correlated, it could lead to
errors in the image fusion process [19].

For this reasons, we propose an intelligent fusion of VIS-IR videos to profit
from the quality of both of them, without having neither to correlate the spec-
trums nor to generate a fused spectrum that may be different from both of them.
To make this manuscript clear to read and easy to grasp, these works will be
detailed in next section.

3 Proposed Method

We propose an intelligent fusion method for moving object detection. The pro-
posed method rely either on visible spectrum either on infrared spectrum ac-
cording to weather conditions and timing of the video acquisition. Thus, the
visible spectrum is used in sunny days under normal weather conditions, while
the infrared spectrum will be used at night or in presence of fog, rain, snow, etc.
Our method is composed of two steps: (i) offline step adopting a data-mining
process in order to build the adequate prediction model for abnormal weather
classification and (ii) an online step to classify VIS images into image in Normal
conditions or in Abnormal conditions and to detect Moving objects in IR spec-
trum or in VIS spectrum. Fig. 1 shows the framework of the proposed method.

3.1 Offline Step

Our offline step is composed of two major steps: (1) Data preparation step, and
(2) Data mining step which aims to build a generic prediction model by the use
of several data-mining algorithms.
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Fig. 1. Proposed method of intelligent fusion VIS-IR for moving object detection

Data Preparation. In this step, we identify efficient weather conditions fea-
tures in order to build a two-dimensional table from our training corpus. This
table is devoted thereafter to the learning step. In our case, the robustness of
an image classification technique depends on reliable and strong environmental
features. A thorough look on the features that are most commonly employed for
describing visibility in the literature provided the grounds for the ultimate selec-
tion of eight features for consideration in our work : Visibility, Local Contrast,
Sharpness, Hue, Saturation and Value [27] and two temporal features based on
the autocorrelation of each pixel’s intensities over time [28], detailed below.

Visibility metric. The visibility metric (equation 1) calculates the ratio be-
tween contrast and noise of Image estimated by a Gaussian kernel.

ZL ZC \/IMnoiseQ (1)
LxC '
Where L and C represent the number of row and column of the image, re-
spectively, I M, q;se is the image noise filtered by a Gaussian filter.
Local Contrast. This feature calculates the contrast between a pixel and its
neighbors (equation 2).

Visibility =

(i) — M,
PR (2)

Where M,, and S, is respectively the mean of the pixels’ gray values and the
standard deviation of the neighbors window.

Sharpness. Seeing that visible images in normal conditions have sharp edges
with large contrast differences, the sharpness was considered as a meaningful
feature to classify images. Roser and al. [27] proposed a measure of sharpness
(equation 3), based on the average of the Sobel gradient magnitude.

S48 p () v/S% (i) + S% (0)
Zz‘éz .

IC’ont (Z) =

Tadv = (3)
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Where, Sx (¢) and Sy (i) are the Sobel filter values for each pixel 4, §; informs
if the pixel is an edge one (= 1, 0 otherwise), and p () is a weighting factor that
is assumed to be inversely proportional to the local contrast.

Features based on AutoCorrelation Function (ACF). Based on the autocorre-
lation function (ACF) of the intensities of each pixel in the time, two temporal
characteristics (C and S) are used for the classification of weather conditions [28]
as are represented in the equations 4 and 5. The feature C' indicates whether
the spatial average of the current frame of the sequence has weaker time-average
autocorrelation of intensity change or not, while the feature S shows whether
the spatial average of the current frame of a sequence in weather condition un-
der classification is only in short-time autocorrelation of intensity change or not.
In fact, the intensity change at the pixel is proportional to the illumination
variation speed. For instance, for fast illumination variation, we notify a strong
short-time autocorrelation; however, in presence of rain streaks or snowflakes
(two brightness states at a fixed pixel), it leads to weaker time-average ACF
value than that of gradual illumination variation.

T-1 .
C = mean ( pngk)> . (4)

5 = mean (£, (1)) (5)

Where g, (k) is equivalent to ACF value at location y in the k' frame interval.
{2 is the current frame and 7T is the limited time length. f (k) represents the
quadratic fit of p (k).

Color Features. Weather conditions variation can be detected in case of color
variation. We choose to consider the Hue, Saturation and Value of images in HSV
color space. This space is known as being the closest one to human perception.

Data Mining. Our goal is to build a predictive model to classify the VIS
image in Normal weather conditions or abnormal ones. This prediction model is
obtained by supervised learning technique. In supervised learning, the efficiency
and genericity of the generated classifier increases when the size of the training
set and the number of relevant features increase. Another pertinent setting to
consider is the choice of the appropriate learning technique.

Evaluation and Validation. The objective of this step is to evaluate the previ-
ous one. It consists in comparison of different prediction models learned in order
to determine the best prediction model for images’ classification according to
weather conditions. Therefore, as for the majority of recent works, we construct
the confusion matrix to evaluate the quality of a prediction model. From this
confusion matrix we can calculate the Total Correct Classification TCC' detailed
in the equation 6.

naa+npp 6)

TCC = .
naa+nap+ngp+npa
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— naa: represents the number of frames in Abnormal weather conditions cor-
rectly classified

— npp: represents the number of frames in Normal weather conditions correctly
classified.

— nap: represents the number of frames in Abnormal weather conditions clas-
sified as in Normal weather conditions.

— npa: represents the number of frames in Normal weather conditions classified
as in Abnormal weather conditions.

3.2 Online Step

In the proposed approach, after the offline step, an online step is carried out.
This latter starts with a step of VIS images classification by the extracted pre-
diction model. Then, according to the decision, we perform either moving object
detection on VIS spectrum or on IR spectrum.

Classification of Frames. The objective of this step is to classify the images of
VIS spectrum into image in Normal weather conditions or in Abnormal weather
conditions. This classification is based on the prediction model extracted from
the offline step.

Moving Object Detection. As soon as images are classified as in Normal
or Abnormal weather conditions, the visible (respectively infrared) spectrum is
considered to perform a moving object detection technique. In this work, we
have adopted a method based on background modeling with dynamic matrix
and spatio-temporal analyses of scenes [29]. This method has shown high per-
formances and robustness in foreground segmentation under various complex
scenes conditions such as sudden and gradual illumination changes, ghost and
foreground speed.

4 Experimental Results

In order to evaluate our proposed method, we carried out a series of experi-
ments. We performed experiments on a large and representative corpus shown
in table 1 and table 2 (15 famous outdoor sequences recorded in typical condi-
tions). This corpus consists of 7 sequences in Normal weather conditions (5440
images) and 8 sequences in Abnormal weather conditions (3525 images). The
Abnormal sequences present several challenges such as fog, rain, snow etc. We
randomly selected sequences from the database to build up our fixed training
(70%) and testing data sets (30%). We ensure that no sequence is used for both
training and testing at the same time for each class.

We then have build learning data: an N %9 matrix of extracted features from
our training corpus (N is the number of pixels from our training corpus). Once
learning data were defined, we proceeded to selecting the appropriate learning
technique. In fact, in literature, we find several techniques of supervised learn-
ing, each with its own advantages and drawbacks. Therefore, the learning is
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Table 1. Sequences of image in Abnormal State

Sequences Number of Frames Resolution (Pixels) Used for
Brouillard1[30] 700 720%576 Learning
Set10 RainyDay' 1049 640360 Learning
Set10 SunStrokes’ 347 640360 Learning
Set10 Tunnel' 216 640360 Learning
Dtneu nebel? 349 768576 Learning
Dtneu winter? 299 768%576 Test
Dtneu schnee? 298 768+576 Test
Brouillard2[30] 267 720500 Test

Table 2. Sequences of image in Normal State

Sequences Number of Frames Resolution (Pixels) Used for

Set3 SuburbanFollow! 1171 12801024 Learning

Set10 Daylight! 902 640%360 Learning

Balcony5 Vis® 564 640%480 Learning

gmul junction* 867 360288 Learning

Set3 SuburbanBridge® 851 1280%1024 Learning
Set3 TrailerFollow" 800 1280%1024 Test
Set10 Snowy' 285 640360 Test

performed by 3 different learning algorithms: the decision tree C4.5, SVM with
Radial Basis Function Kernel and Multilayer Perceptron Neural Network (MLP).
Each method is considered as reference in its category. This data mining algo-
rithms were compared according to Total Correct Classification (equation 6).
The experimental results are shown in figure 2. We obtained a best classification
rate on learning and Test set by C4.5 (81.16%).

Fig. 3 shows some promising results of our method. In fact, the images (a) and
(b) are extracted from two sequences which have two bad weather conditions
respectively snowy day and fog. These two images are classified in Abnormal
conditions. In the other hand, the images (b) and (c) present two scenes in
favorable weather conditions that are classified as in the Normal conditions.
Note that in the scene of (b) there’s snow in the boards of the road but it does
not snow when it is recorded. This is due to the characteristics based on the
autocorrelation of pixel-wise intensities over time that allow to distinguish the
motion blur caused by rain streaks or snowflakes.

! http://cev.wordpress.fos.auckland.ac.nz/eisats/
% http://i2lwww.ira.uka.de/image sequences/
3 http://www.eeng.dcu.ie/~oconaire/dataset/
* http://www.eecs.qmul.ac.uk/~ccloy/index.html


http://ccv.wordpress.fos.auckland.ac.nz/eisats/
http://i21www.ira.uka.de/image_sequences/
http://www.eeng.dcu.ie/~oconaire/dataset/
http://www.eecs.qmul.ac.uk/~ccloy/index.html
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Fig. 3. Results of classification (a) and (b) are classified in Abnormal weather condition
but (c¢) and (d) are classified in Normal weather condition

5 Conclusion

In this paper, we proposed a novel method of intelligent fusion for moving ob-
ject detection. This method relies on a classification step of images according to
the weather conditions. We consider visible or infrared spectrums according to
weather conditions (darkness, sunny days, fog, snow, etc.). For thus, we first ex-
tract a set of low-level features (visibility, local contrast, sharpness, two features
based on ACF which are C and S, hue, saturation and value), then we generate
a prediction model by supervised learning techniques. Experimentations carried
out on several sequences with different weather conditions prove the effectiveness
of the generated prediction model. Compared to two other learning techniques
(SVM and MLP), prediction model generated by C4.5 records the best classifi-
cation rate with 81.16%. Our future orientations will examine the impact of our
contribution on the accuracy of moving object detection in VIS and IR videos.
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